Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Lancet Glob Health ; 11(5): e759-e769, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298516

ABSTRACT

BACKGROUND: Several vaccine candidates are in development against MERS-CoV, which remains a major public health concern. In anticipation of available MERS-CoV vaccines, we examine strategies for their optimal deployment among health-care workers. METHODS: Using data from the 2013-14 Saudi Arabia epidemic, we use a counterfactual analysis on inferred transmission trees (who-infected-whom analysis) to assess the potential impact of vaccination campaigns targeting health-care workers, as quantified by the proportion of cases or deaths averted. We investigate the conditions under which proactive campaigns (ie vaccinating in anticipation of the next outbreak) would outperform reactive campaigns (ie vaccinating in response to an unfolding outbreak), considering vaccine efficacy, duration of vaccine protection, effectiveness of animal reservoir control measures, wait (time between vaccination and next outbreak, for proactive campaigns), reaction time (for reactive campaigns), and spatial level (hospital, regional, or national, for reactive campaigns). We also examine the relative efficiency (cases averted per thousand doses) of different strategies. FINDINGS: The spatial scale of reactive campaigns is crucial. Proactive campaigns outperform campaigns that vaccinate health-care workers in response to outbreaks at their hospital, unless vaccine efficacy has waned significantly. However, reactive campaigns at the regional or national levels consistently outperform proactive campaigns, regardless of vaccine efficacy. When considering the number of cases averted per vaccine dose administered, the rank order is reversed: hospital-level reactive campaigns are most efficient, followed by regional-level reactive campaigns, with national-level and proactive campaigns being least efficient. If the number of cases required to trigger reactive vaccination increases, the performance of hospital-level campaigns is greatly reduced; the impact of regional-level campaigns is variable, but that of national-level campaigns is preserved unless triggers have high thresholds. INTERPRETATION: Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating only health-care workers, underlining the need for countries at risk of outbreaks to stockpile vaccines when available. FUNDING: UK Medical Research Council, UK National Institute for Health Research, UK Research and Innovation, UK Academy of Medical Sciences, The Novo Nordisk Foundation, The Schmidt Foundation, and Investissement d'Avenir France.


Subject(s)
Epidemics , Middle East Respiratory Syndrome Coronavirus , Humans , Vaccination , Health Personnel , Disease Outbreaks/prevention & control , Epidemics/prevention & control
2.
Elife ; 102021 07 13.
Article in English | MEDLINE | ID: covidwho-1308531

ABSTRACT

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Subject(s)
Bacterial Infections/prevention & control , Bacterial Vaccines/therapeutic use , COVID-19 , Global Health , Models, Biological , SARS-CoV-2 , Bacterial Infections/epidemiology , Humans
3.
BMJ Open ; 11(4): e050346, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199796

ABSTRACT

OBJECTIVE: To measure the effects of the tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern. DESIGN: This is a modelling study combining estimates of real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities to account for broader national trends in addition to subnational effects from tiers. SETTING: The UK at lower tier local authority (LTLA) level. 310 LTLAs were included in the analysis. PRIMARY AND SECONDARY OUTCOME MEASURES: Reduction in real-time reproduction number Rt . RESULTS: Nationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9-1.6) across LTLAs, but declined to an average of 1.1 (0.86-1.42) 2 weeks later. Decline in transmission was not solely attributable to tiers. Tier 1 had negligible effects. Tiers 2 and 3, respectively, reduced transmission by 6% (5%-7%) and 23% (21%-25%). 288 LTLAs (93%) would have begun to suppress their epidemics if every LTLA had gone into tier 3 by the second national lockdown, whereas only 90 (29%) did so in reality. CONCLUSIONS: The relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Communicable Disease Control , Humans , Pandemics , United Kingdom/epidemiology
4.
Nature ; 593(7858): 266-269, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152860

ABSTRACT

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Subject(s)
COVID-19/transmission , COVID-19/virology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , England/epidemiology , Evolution, Molecular , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL